-
Second Harmonic Generation Slot Waveguide카테고리 없음 2021. 8. 25. 03:47
- Dionne JA, Sweatlock LA, Atwater HA (2006) Plasmon slot waveguides: towards chip-scale propagation with sub wavelength-scale localization. Phys Rev B 73:035407CrossRefGoogle Scholar
- Zia R, Selker MD, Catrysse PB, Brongersma ML (2004) Geometries and materials for sub wavelength surface plasmon modes. J Opt Soc Am A 21:2442–2446CrossRefGoogle Scholar
- Miyazaki HT, Kurokawa Y (2006) Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys Rev Lett 96:097401CrossRefGoogle Scholar
- Genevet P, Tetienne JP, Gatzogiannis E, Blanchard R, Kats MA, Scully MO, Capasso F (2010) Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings. Nano Lett 10(12):4880–4883CrossRefGoogle Scholar
- Davoyan AR, Shadrivov IV, Kivshar YS (2009) Quadratic phase matching in nonlinear plasmonic nanoscale waveguides. Opt Express 17(22):20063–20068CrossRefGoogle Scholar
- Hasan SB, Rockstuhl C, Pertsch T, Lederer F (2012) Second-order nonlinear frequency conversion processes in plasmonic slot waveguides. J Opt Soc Am B 29(7):1606–1611CrossRefGoogle Scholar
- Ashkin A, Boyd GD, Dziedzic JM, Smith RG, Ballman AA, Levinstein JJ, Nassau K (1966) Optically-induced refractive index in homogeneities in LiNbO3 and LiTaO3. Appl Phys Lett 9(1):72–74CrossRefGoogle Scholar
- Yariv A (1978) Phase conjugate optics and real-time holography. IEEE J Quantum Electron 14(9):650–660CrossRefGoogle Scholar
- Gunter P (1982) Holography, coherent light amplification and optical phase conjugation with photorefractive materials. Phys Rep 93(4):199–299CrossRefGoogle Scholar
- Dittrich P, Montemezzani G, Bernasconi P, Guunter P (1999) Fast, reconfigurable light-induced waveguides. Opt Lett 24(21):1508–1510CrossRefGoogle Scholar
- Marrakchi A, Huignard JP, Guunter P (1981) Diffraction efficiency and energy transfer in two-wave mixing experiments with Bi12SiO20 crystals. J Appl Phys 24(2):131–138CrossRefGoogle Scholar
- Veronis G, Fan S (2005) Bends and splitters in metal–dielectric–metal sub wavelength plasmonic waveguides. Appl Phys Lett 87:131102CrossRefGoogle Scholar
- Boyd RW (2008) Nonlinear optics (Academic)Google Scholar
- Qasymeh M (2014) Photorefractive effect in plasmonic waveguides. IEEE J Quantum Electron 50(5):327–333CrossRefGoogle Scholar
- Levy JS, Foster MA, Gaeta AL, Lipson M (2011) Harmonic generation in silicon nitride ring resonators. Opt Express 19(12):11415–11421CrossRefGoogle Scholar
- Roth M, Tseitlin M, Angert N (2005) Oxide crystals for electro-optic Q-switching of lasers. Glas Phys Chem 31(1):86–95CrossRefGoogle Scholar
- Lu FF, Li T, Hu XP, Cheng QQ, Zhu SN, Zhu YY (2011) Efficient second-harmonic generation in nonlinear plasmonic waveguide. Opt Lett 36(17):3371–3373CrossRefGoogle Scholar
- Ning TY, Pietarinen H, Hyvärinen O, Kumar R, Kaplas T, Kauranen M, Genty G (2012) Efficient second harmonic generation in silicon nitride resonant waveguide gratings. Opt Lett 37(20):4269–4271CrossRefGoogle Scholar
- Zhang J, Cassan E, Gao D, Zhang X (2013) Highly efficient phase-matched second harmonic generation using an asymmetric plasmonic slot waveguide configuration in hybrid polymer-silicon photonics. Opt Express 21(12):14876–14887CrossRefGoogle Scholar
- Kurokawa Y, Miyazaki HT (2007) Metal-insulator-metal plasmon nanocavities: analysis of optical properties. Phys Rev B 75:035411CrossRefGoogle Scholar
- Charbonneau R, Lahoud N, Mattiussi G, Berini P (2005) Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Opt Express 13:977–984CrossRefGoogle Scholar
- Goto T, Katagiri Y, Fukuda H, Shinojima H, Nakano Y, Kobayashi I, Mitsuoka Y (2004) Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates. Appl Phys Lett 84:852–854CrossRefGoogle Scholar
- LyGagnon DS, Balram KC, White JS, Wahl P, Brongersma ML, Miller DAB (2012) Routing and photo detection in sub wavelength plasmonic slot waveguides. Journal of Nanophotonics 1(1):9–16Google Scholar
- Cazzanelli M, Bianco F, Borga E, Pucker G, Ghulinyan M, Degoli E, Luppi E, Véniard V, Ossicini S, Modotto D, Wabnitz S, Pierobon R, Pavesi L (2011) Second-harmonic generation in silicon waveguides strained by silicon nitride. Nat Mater 11(2):148–154CrossRefGoogle Scholar
- Soltani M, Nikoufard M, Dousti M (2016) “Investigation of second harmonic generation in asymmetric metal-insulator-metal plasmonic waveguides.” Plasmonics 11(2):689–695Google Scholar
Slot Waveguide Antenna
Waveguide Slot Array
Quadratic phase matching slot waveguide second harmonic mode second harmonic generation phase velocity matching second harmonic wide spectral range phase-matched second-harmonic generation pioneering work optical society birefringent phase-matching conversion efficiency spatio-temporal overlap america ocis code non-critical pm state-of-the-art nanotechnology several approach frequency doubling nanosized quadratic waveguide form birefringence studied nonlinear process waveguide dispersion. In the metal-clad plasmonic double-slot waveguide, the PMC between the zeroth mode at the fundamental wave (FW) and the second mode at the third harmonic (TH) is achieved. Taking advantage of the channel plasmon polariton (CPP), the electric fields at both FW and TH are tightly confined in the slot region. We theoretically propose an internal asymmetric plasmonic slot waveguide (IAPSW), containing two different materials in the slot region. The IAPSW is used for second harmonic generation (SHG) at a wavelength of 1.55 μm.